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The problem of plane arbitrarily stratified flow of finite thickness around a body is considered in the 

linearized formulation. A theorem of Tikhonov and Samarskii [l] on the uniqueness of the solution of 

the external Dirichlet problem for the Helmholtz equation in the plane case is extended to 

asymmetrical radiation conditions and this is used to investigate the nature of the non-uniqueness of 

the solution of the linearized problem of the flow around the body. The existence of a solution is 

investigated by potential-theory methods. The “dipole approximations” of the solution of the flow 

problem when the radiation coefficient approaches zero are proved. 

1. FORMULATION OF THE PROBLEM 

THE PLANE steady-state flow of an ideal heavy incompressible liquid with an arbitrary stable 
stratification and a free boundary flowing around a body situated inside the flow or on a 
horizontal bottom is considered. The origin of coordinates is chosen to be on the bottom, the y 
axis is directed upwards, and the x axis is directed along the flow. As x+ ---oo the flow is 
asymptotically unperturbed, its velocity is U, its depth is H, the characteristic dimension of the 
obstacle along the vertical is h , and the acceleration due to gravity is g. The quantities U and H 
are taken as the units of velocity and length, and the equations are written in dimensionless 
variables. The piecewise-smooth function p(y) specifies the density distribution in the 
unperturbed flow, where dp G 0, p 3 p,, > 0. 

We will assume that the total energy of a particle in the unperturbed flow is sufficient for the 
particle to be able to rise in the field of the force of gravity from the equilibrium level at a 
height h/2. In this case the obstacle cannot “block the flow” and the pattern of streamlines has 
qualitatively the same character as in the case of uniform flow around the body. There are only 
two critical points on the boundary of the body and only one streamline branches at these 
critical points. On any streamline the x coordinate increases monotonically from --m to +oo. 

If we put 

and denote by C(X, y) the deviation along the vertical of a liquid particle from the equilibrium 
state, the exact equation of motion has the form 

(1.1) 

Suppose y = Y(x) is the equation of the unknown free boundary, x = x0(s), and y = y&), 
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0 g s 6 s, is the equation of the boundary y of the body 0. Then the system of boundary 
conditions has the form 

SW) = 0, 5(x,Y(x)) = Y(x)- 1, linl <(x,y) = 0 
X-h-U 

w 

~/~-V~-~~V5)~ =0 when y=y(x) 
s(xo w. Yo WI = Yo (4 - vo 

The ~0~ function Y(X) and the unknown constant 
solving the problem. 

w0 must be determined when 

2. LINEARIZATION 

(1.3) 

We will assume that the parameter e is fairly small and that the deviation of the ordinate of a 
liquid particle from its unperturbed value is also small, i.e. the dimensions of the body are 
small compared with the depth of the flow. By linearizing E@. (l.l), we obtain the Helmholtz 
equation with refractive index k2a2(y) 

a*$ a* 
+--g+k*a*(y)$ = 0 sti (2.1) 

No limitations are imposed on the value of the parameter k. After linearizing the boundary 
conditions (1.2) we obtain 

Stm = 0, $(x,1)-v~(x,l)=O, lim q(x, y) = 0 I-*--r (2.2) 

Boundary condition (1.3) is not changed. 

3. INTEGRAL REPRESENTATION OF THE SOLUTION 

As we know, Green’s function G(x, y, JJ) satisfies the inhomogeneous Helmholtz equation 
with right-hand side s(x)6(y - 11) and boundary conditions (2.2). 

Using the method of separation of variables it is easy to show that [2] 

where e(n) is the Heaviside function, which equals zero when x<O and equals unity when 
x 3 0, (Q,(Y)} is the o~onor~li~d system of eigenf~ctions of the corresponding Sturm- 
Liouville problem, uf, . . . , I& are positive eigenvalues, and -K!, i> N are negative 
eigenvalues. 

If we use the well-known asy~totic eigenvalues and the eige~~ctions as II + 00, it can be 
shown that 

G(x,y,$ _ (2x)-’ ln+/w as x-,0, y-+u (3.2) 

If we apply Green’s formula and use relation (3.2) and the fact that &x, y) + 0 as x -+ -, 
and G(x - 4, X, q) -_) 0 as 5 + +“, then for the solution which possesses the correct normal 
derivative [3] on the contour y we obtain the integral representation 
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(33) 

4. THEOREM OF THE UNIQUENESS OF THE SOLUTION OF THE EXTERNAL 
DIRICHLET PROBLEM 

Suppose To is a strip 0 d y d 1, from which the interior of the region Cl is removed. We will 
formulate the external Dirichlet problem as follows: it is required to obtain the function c(.x, y) 
twice continuously differentiable inside the interior of T,, continuous on T,, and which 
satisfies Eq. (2.1) and the boundary conditions (2.2) inside the region T,, and also satisfies 
the condition d7= f(s), where f(s) is a known continuous function. 

The theorem of uniqueness. Suppose n is a convex region, and a(y) is a piecewise-analytic 
function, k > 0. The solution of the external Dirichlet problem with correct normal derivative 
on 7 is unique. 

It is sufficient to show that when f(s) I 0 the solution C(X, y) = 0. Suppose the region a lies 
in the rectangle IX Ic u, 0 < y < 1. Substituting expansion (3.1) into (3.3) we obtain that when 
x > u, the following equation holds 

q(x,y)= i a,s’ wAx-Wcp,(~)+J4 
?I=1 n=N+l 

(4.1) 

The expressions for the numbers a, and 6, in terms of curvilinear integrals over the 
contour 7 are not important for our further discussion. 

Consider the system of functions 

Vk(X~Y) = 
cosK,(X-S&pr(y), k = l,...,N 

eKkX% (y), k>N (4.2) 

which satisfy Eq. (2.1) and boundary conditions (2.2) when y = 0 and y = 1. Applying Green’s 
formula to the functions &x, y) and v,(x, y) in the rectangle ad x d b, 0 d y d 1, we obtain 

By virtue of the boundary conditions the integrals over the horizontal sides of the rectangle 
vanish. Substituting (4.1) and (4.2) into (4.3) and using the orthonormality of the system p,(y), 
we obtain that the integrals over the vertical sides of the rectangle are independent of a and b 
and are equal to K#~. Consequently c = 0 when x > a We can similarly prove that c = 0 when 
xc-a 

SupposetO, Yl,..., yn+ 1) is a partition of the section (0,l) such that in each of the intervals 
(y,_i, yJ the function u(y) is analytic, and T is the strip - < x < +oo, 0 < y < 1, Tm = q \f2. In 
view of the convexity of the region G, the domain T, is split into two connectivity 
components, and when (x; y) E Tn and I x I> (I the function c(x, y) = 0. Since the function &., y) 
is analytic in the region T,, then by virtue of the theorem of uniqueness for analytic functions 
C&y)-Oin Tm (i=l,..., n). Hence, &, y) = 0 in the region Tn. 

If we make the stronger assumption that u(y) is analytic in (0, l), we can dispense with the 
condition of the convexity of the region Q. 

The flow problem will henceforth be investigated by potential-theory methods. The internal 
homogeneous Neumann problem will play an important role here, namely, it is required to 
obtain a function &, y) that is continuous in fi and twice continuously differentiable inside 
the region Q and having a correct normal derivative on 7 equal to zero. 
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Those values of the parameter k for which the homogeneous internal Neumann problem has 
non-total solutions, will be called critical values, We know that the critical values, which are 
eigenvalues of the spectral problem for Laplace’s equation, form a denumerable set, non- 
negative and of finite multiplicity. 

5. SOLUTION OF THE FLOW PROBLEM BY POTENTIAL-THEORY METHODS 

It follows from (3.2) that the functions 

V(O) = -27n(s)G(x(s)- x, y(s),y,k)ds 
0 

v(‘f = -2spv(s) a ( - x - x(s), y. y(s), k)ds 
0 +3l 

possess all the properties of the potentials of simple and double layers [3]. 
If we seek a solution of the external Dirichlet problem in the form of a double-layer 

potential, and a solution of the internal homogeneous Nepal problem in the form of a 
simple-layer potential, we obtain an associated Fredholm integral equation for determining the 
densities of the layers 

u(a) = 27u(s)K(s,a,k)ds (5.1) 0 

V(b) = 2Sj)v(sfK(a,s,k)ds+ f(o) 
11 (5.2) 

a 
K(o,s,k) = - 

an@l 
G(W) - -4s). y(a), y(s1.k) 

Those values of the parameter k for which Eq. (5.1) has non-trivial solutions will be called 
critical values. 

Suppose k is a critical value, while k(s), . . . , p,(s) are the corresponding eigenfunctions of 
Eq. (5.1). We know (31 that Eq_ (5.2) has a solution if and only if the functionfls) is orthogonal 
to &(S), * ’ * t &is). 

Note that k=O is a simple critical value. The corres~nding solution of the internal 
Neumann problem is identically equal to unity in the region Q. If this solution is represented in 
the form of a simple-layer potential, the density of this potential will be denoted by l&(s). 
When k= 0, Eq. (5.1) and the corresponding external Dirichlet problem for Laplace’s 
equation have a solution if and only if the function f(s) is orthogonal to h(s). 

If k is not a critical value, then, as follows from potential theory, Eq, (5.2) and the external 
Dirichlet problem are solvable for an arbitrary continuous function f(s). It is interesting that 
when k>O, the external Dirichlet problem is solvable even if k is a critical value. This 
assertion was proved in [4] for symmetrical radiation conditions. We will present a proof for 
the plane case and for asymmetrical radiation conditions. 

Suppose k >O is a critical value of multiplicity na, and p&), . . . , p,(s) are the 
correspond~g eige~unctio~ of Eq. (5.1). We will seek a solution of the external Dirichlet 
problem in the following form 

To dete~ne the density v(o) we will obtain the integral equation 
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v(a)= 2ljlv(s)K(a,s,k)ds+f(a)+ biG(x(a)-q, y(ah6j.k) 
0 id 

For this equation to be solvable it is necessary and sufficient that the free term should be 
orthogonal to h(o), . . . , p,(o). To determine 
equations 

the constants a we obtain the system of linear 

~aiVj(ai,bi)= Cj, 
i=l 

Cj = -~f(“)Pj(o)do (5.4) 

Vj (XvY) = J G(x(o) -x9YtY(o)9k)Pj(o)do 
0 

System (5.4) is solvable if and only if its determinant is non-zero 

dCtlVj(Uiy6i)l z 0 (5.5) 

We will show that we can choose points (a,, bi) so that conditions (5.5) are satisfied. If this is 
not so, then for any points (xi, yi) E f2, i = 1, . . . , m the following condition will be satisfied 

F(X,.Y,,..., x,sY,)= d$‘j(xi,yi)i= 0 (5.6) 

Since the simple-layer potential_ l$(x, y) is continuous in the closed region T, relation (5.6) is 
satisfied for any points (xi, yi) E a. We now note that for each pair of variables the function F 
is a solution of the Helmholtz equation in the external region T\C$ which vanishes at the 
boundary of the region. In view of the uniqueness of the solution of the external Dirichlet 
problem the relation F = 0 is satisfied over the whole strip T. Hence, the jump in the normal 
derivative of the function F on passing through the boundary of the region is equal to zero for 
any group (&, q,). Using the rule for calculating the derivative of a determinant and the fact 
that the jump of the normal derivative of the simple-layer potential on passing through the 
boundary of the region is equal to the density of the potential from (5.6), we obtain that 

(5.7) 

for any set of points ol, . . . , q,, in the region [0, s,,]. As can easily be shown, it follows from 
the linear independence of the functions ~~(a), . . . , p,(o) that we obtain in the section [0, s,,] 
thosepoints crl, . . . . om such that det Il.tj(oj) I+ 0, which contradicts Eq. (5.7). 

The contradiction obtained proves that a choice of points (4, bi) E a is possible for which 
condition (5.5) is satisfied and, consequently, system (5.4) and correspondingly the external 
Dirichlet problem for the Helmholtz equation have a solution. 

Note that the solution is simplified when m = 1. 

6. INVESTIGATION OF THE PROBLEM OF THE FLOW AROUND A BODY 

When solving the flow problem we must take yO(s)-w0 as the function fls), as follows from 
the boundary condition (1.3), where w0 is an arbitrary parameter in the section [0, 11. It follows 
from the proved uniqueness and existence of the solution of the Dirichlet problem that the 
solution of the flow problem depends linearly on the arbitrary parameter w,,. 

Using the model of an ideal liquid we can dispense with the non-uniqueness only by taking 
into account additional hypotheses. In the case of a homogeneous liquid we can use the 
hypothesis that the circulation of the velocity is equal to zero or the Zhukovskii-Chaplygin 
hypothesis that the velocity is finite at the sharp edge of a wing. If the liquid is inhomogeneous, 
then for an arbitrary value of k the question of a reasonable additional hypothesis remains 
open. Here we will adopt the approach applicable in the case of a slightly stratified liquid, i.e. 
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when k+O. 
Since the critical values of k are isolated and k = 0 is a simple critical value, we will take k in 

the range [0, &] in which there are no other critical values apart from k = 0. It has been shown 
that the problem of the flow around a plane region reduces to solving the external Dirichlet 
problem for the Helmholtz equation, where two parameters w0 and k occur in the equations 
and boundary conditions. In view of the uniqueness of the solution of the external Dirichlet 
problem the solution of the flow problem will depend on the parameters w0 and k. 

If we seek a solution of the flow problem in the form 

s=-27 v s -(x-~(~),y,y(~).k)ds+aG(x-a,y,b) () aG 
0 a”h 

then, to determine the density v(a) we obtain the following integral equation 

(64 

v(a,k) = 2~K(o,s,k)v(s,k)ds+ aG(x(o) - u,y(a),b,k) +y(o) - yto 
0 

The function K is given by Eq. (5.2). 

(6.2) 

When k > 0, the solution of Eq. (6.2) depends on five parameters: after substituting the 
solution of Eq. (6.2) into (6.1) the dependence on the parameters a, u and b should drop out, 
since c depends only on the parameters k and w,,. Hence, the parameters a, a and b can be 
chosen arbitrarily. 

When k = 0, Eq. (6.2) has a solution if and only if the following condition is satisfied 

abj)Go(~(~~--a,y(a),~)~o(a)du+~(y(~)-~o)~o(~)d~=O, Go =GI,,, 
0 0 

(6.3) 

where l.tO(o) is the solution of the associated homogeneous equation. 
It was shown earlier that one can always choose a and b so that the coefficient of the 

parameter a does not vanish. This enables us to determine a from Eq. (6.3). 
Since when k > 0 the choice of the parameter a is arbitrary, we will take it to be the same as 

when k = 0. The solution of Eq. (6.2) will then depend continuously on the parameter k in the 
whole region [0, %]. 

If the flow is non-circulatory and a = 0, E!q. (6.3) enables us to determine wO, since the 
coefficient of this parameter cannot be zero. In fact, if this is not so, unity is orthogonal to 
p&o) and the external Dirichlet problem for Laplace’s equation with the function f(s) = 1 has 
a solution in the form of a double-layer potential 

It follows from representation (6.4) and from the properties of the function G, that 
],(%J&r)d.r = 0 for any closed contour y surrounding the region n. 

It follows from (3.1) that 

G,(x.~,rl)=B(x)~-‘cp(y)cp(~)s~~x+G~(x.~,r\) (6.5) 

where the function G1 is even with respect to x and falls exponentially as x + ~0. Substituting 
(6.5) into (6.4) we obtain that when I x I> a and u is fairly large, the following relation holds 

<(x,y) = ce(x>cp(Yb~ K(X - x0) + SI (X.Y) 

where C and x,, are certain numbers, while the function &(x, y) --PO as x+ 00. We will put 
x,=~+N~/K and T,=((x, y):(x, y)~T\fl, IxIcx,). 

Applying Green’s formula to the region T, and using the boundary conditions and the 
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choice of K,, we obtain 

(6.6) 

Since $= 1, the last integral in (6.6) is equal to zero, and consequently Vs = 0 in the region 
Tn. Since n is arbitrary, we have V< = 0 in the region T \ fl and [ = const in T \ il. But this is 
impossible since sly= 1 and c + 0 as x + --oQ. Thus, when a=O, Eq. (6.4) determines the value 

of wo. 

7. DIPOLE APPROXIMATIONS 

We will write (6.1) in the form 

s = -2jv(s,k) 
7 C 

$cx-5.r,ll,r,rm -$x-S.YJl.k)dS + 
1 

(7.1) 

+aG(x-xo.y,yo,k) 

If the dimensions of the body around which the flow occurs are small compared with the 
depth of the liquid, and the point (x0, y,) E 0, then, apart from quantities of higher orders with 
respect to the dimensions of the body, we obtain from (7.1) 

SkY) = 
ac 

-2A(k)dS(x-x~,~.~~,k)+ 

+2B(k)dC(x-q,y,y,,k)+aG(x-x~.y.y~.k) 
h 

A(k) = jv(s,k)dq, B(k) = IV(s.k)d& x >> x, 
Y 7 

(7.2) 

where the constant a is found from (6.3). 
It is natural to call (7.2) the “dipole approximation” of the solution of the flow problem. 
The coefficients A(k) and B(k) depend analytically on the parameter k, and for small k can 

be replaced by A(0) and B(0); the error resulting from this replacement is of the order of k’. 
We will show how the coefficients A(0) and B(0) can be obtained. We put k = 0 in (7.1) and 

use the fact that when k = 0 the function c= Im(z = w(z)), where w(z) is the complex potential 
and G = ImH, where H(z, 5, 5) is a known analytic function having a logarithmic singularity 
when z=[ 

H(2,z,&)=i(2rc)-‘1n(z-zo)+H,(z,zo.Z~) (7.3) 

It follows from (7.3) that 

z-w(z)=-2AoHt+2BoH,+aH= (7.4) 

= -iA$r”(z - IO)-1 -~,$-‘(z-zo)-l + H2(z,zo,Fo) 

where the function &(z, b, &) is regular at the point z= q. 
It follows from (7.4) that a = I(27c)-‘, where I is the circulation of the velocity around the 

contour ‘y. Differentiating (7.4), multiplying the result by z-b, and integrating over the 
contour y taking into account the fact that @IT= 0, we obtain 
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-j<z -so)& = 2‘4) -2iBo 

2; =-b-x,)&, 2$ = J(y-yo)dq 
-I -i 

For arbitrary motion of the body with velocity (U, V) the complex potential can be 
represented in the form w = VW, +Vw, +rw, [5], where w&=-y, wzlv=-x. In the case 
considered w = -w, + Tw, - z, and hence 

~~o=J(Y-Y~)(-~-@,+~&~)=-JY~~-J~,~~~+ 
Y Y 7 

+J(Y-~o)w,=-S-h+mo 
7 

-2~o = J(x-x0)(-dr-dcp, +I-‘@,)= 
Y 

= JWR +~J(x-x~)c%, =-h,,+rSo 
7 Y 

where S is the area of the region fJ, h,, and h,, are the corresponding additional masses, and 
(l$, qO) is the conformal centre of gravity of the region Q [5]. 

Substituting the expressions for the coefficients into (7.2) we obtain that at distances that 
considerably exceed the diameter of the body, the following approximate formula holds 

If I=0 and h, =O, we obtain a simpler formula from (7.9, obtained in [6] for the case of 
distributed sources. 
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